Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Tipo del documento
Intervalo de año
1.
Atmospheric Chemistry and Physics ; 22(7):4853-4866, 2022.
Artículo en Inglés | ProQuest Central | ID: covidwho-1786221

RESUMEN

The outbreak of COVID-19 promoted strict restrictions to human activities in China, which led to a dramatic decrease in most air pollutant concentrations (e.g., PM2.5, PM10, NOx, SO2 and CO). However, an obvious increase in ozone (O3) concentrations was found during the lockdown period in most urban areas of China. In this study, we conducted field measurements targeting ozone and its key precursors by utilizing a novel proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) in Changzhou, which is representative of the Yangtze River Delta (YRD) city cluster of China. We further applied the integrated methodology including machine learning, an observation-based model (OBM) and sensitivity analysis to obtain insights into the reasons causing the obvious increase in ozone. Major findings include the following: (1) by deweathered calculation, we found changes in precursor emissions contributed 1.46 ppbv to the increase in the observed O3 during the full-lockdown period in 2020, while meteorology constrained 3.0 ppbv of O3 in the full-lockdown period of 2019. (2) By using an OBM, we found that although a significant reduction in O3 precursors was observed during the full-lockdown period, the photochemical formation of O3 was stronger than that during the pre-lockdown period. (3) The NOx/VOC ratio dropped dramatically from 1.84 during the pre-lockdown to 0.79 in the full-lockdown period, which switched O3 formation from a VOC-limited regime to the boundary of a NOx- and VOC-limited regime. Additionally, box model results suggested that the decrease in the NOx/VOC ratio during the full-lockdown period could increase the mean O3 by 2.4 ppbv. Results of this study give insights into the relationship between O3 and its precursors in urban area and demonstrate reasons for the obvious increase in O3 in most urban areas of China during the COVID-19 lockdown period. This study also underlines the necessity of controlling anthropogenic oxygenated volatile organic compounds (OVOCs), alkenes and aromatics in the sustained campaign of reducing O3 pollution in China.

2.
COVID-19 in the Environment ; : 325-344, 2022.
Artículo en Inglés | ScienceDirect | ID: covidwho-1520582

RESUMEN

This study investigates the transport of air pollutants around the Yangtze River Delta with an aim to identify if there would be a relationship towards health effects during the COVID-19 lockdown period. It is well-known that due to lockdown, the number of socio-economical activities are reduced and hence there is an observable reduction in air pollution. We would like to investigate if this consequential reduction of air pollution would lead to improvement in health amongst its population. A number of integrated methodologies are utilized, including collection and correlation of statistical data and numerical modeling to correlate the mortality rates difference with and without COVID-19 lockdown. In particular air quality changes during the COVID-19 lockdown period are compared with similar periods of the previous years using Brute Force Method. It is found that in general there is significant reduction in air-pollution related mortality, like stroke, ischemic cardio diseases, obstructive pulmonary disease, lung cancer and acute lower respiratory infection are all reduced as a result of relative improvement in PM2.5 level during the lockdown period. Further investigation of the trajectories suggests that these PM2.5 originate from afar with multiple sources, and do not suggest COVID-19 are transported to the region via long-range transport. Our results demonstrate the need for more stringent policy measure to tackle air pollution as it has strong evidence that it increases mortality rate.

3.
Geohealth ; 4(9): e2020GH000272, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: covidwho-728968

RESUMEN

The outbreak of COVID-19 in China has led to massive lockdowns in order to reduce the spread of the epidemic and control human-to-human transmission. Subsequent reductions in various anthropogenic activities have led to improved air quality during the lockdown. In this study, we apply a widely used exposure-response function to estimate the short-term health impacts associated with PM2.5 changes over the Yangtze River Delta (YRD) region due to COVID-19 lockdown. Concentrations of PM2.5 during lockdown period reduced by 22.9% to 54.0% compared to pre-lockdown level. Estimated PM2.5-related daily premature mortality during lockdown period is 895 (95% confidential interval: 637-1,081), which is 43.3% lower than pre-lockdown period and 46.5% lower compared with averages of 2017-2019. According to our calculation, total number of avoided premature death aassociated with PM2.5 reduction during the lockdown is estimated to be 42.4 thousand over the YRD region, with Shanghai, Wenzhou, Suzhou (Jiangsu province), Nanjing, and Nantong being the top five cities with largest health benefits. Avoided premature mortality is mostly contributed by reduced death associated with stroke (16.9 thousand, accounting for 40.0%), ischemic heart disease (14.0 thousand, 33.2%), and chronic obstructive pulmonary disease (7.6 thousand, 18.0%). Our calculations do not support or advocate any idea that pandemics produce a positive note to community health. We simply present health benefits from air pollution improvement due to large emission reductions from lowered human and industrial activities. Our results show that continuous efforts to improve air quality are essential to protect public health, especially over city-clusters with dense population.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA